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Abstract

We study the tracer subgrid term in isopycnal coordinates, S I. We employ two

_ngredients: the experimental data on vertical spectra of ocean turbulence measured by

Gargett et al.(1981) and the stochastic approach recently developed by Dukowicz and

Smith (1997). Our result confirms that S I is made of two parts: an advection and a

diffusion term. However, the tracer bolus velocity u consists of two terms

U --U+U
1 2

while in the GM model there is only a term related to u which is shown to be:
1

A ^

ul= r_I-IVPq

where q is the thickness weighted average potential vorticity, a result in agreement with

the recent suggestions by Treguier et al. (1997), Lee et al. (1997) and Greatbatch (1998).

The second component u is new. We compute it in the geostrophic approximation using
2

the Gargett et al. data (1981) on ocean vertical turbulence. We find that u >>u and that
2 !

u is orthogonal to u.
2 !



I. Introduction

Ocean general circulation models O---GCM used in climate studies cannot afford a

resolution better than a few degrees and therefore are not eddy resolving. This presents a

difficulty since one must then model the large number of unresolved scales ranging from

mesoscales down to dissipation scales. Particular attention has recently being paid to the

mesoscales. Since they are much smaller than their atmospheric analogs, cyclones and

anticycbmes, the assessment of their dynamical role has been considerably more laborious.

For many years, their role was assumed to be primarily diffusive, a process accounted for

by a constant and very large diffusivity. But even if one were able to "tune" a set of

diffusivities to reproduce a particular set of ocean data, such a model would lack predictive

power and would thus defeat the purpose of being usable in climate modeling where

prediction of future scenarios is of paramount importance. In addition, and more

importantly, Gille and Davis (1999) have recently shown that the 'skill index" of such

model is a modest 10% (Z is defined as the percentage of the mean squared mesoscale flux

reproduced by a given parameterization visa' vis the value computed with a mesoscale

resolving model). The advent of eddy resolving models has revealed that mesoscale eddies

can hardly be represented by a diffusion-type model alone since mesoscale eddies do more

than smooth out density contrasts, they provide an additional advective transport which, in

some sense, is the opposite of diffusion since advection brings together regions far removed

from one another. The advective role of mesoscale eddies was first recognized in

atmospheric studies due to the work of Andrews and McIntyre (1976), Matsuda (1980),

Plumb and Mahlman (1987), as reviewed by Andrews et al. (1987). Clearly, a satisfactory

solution to this problem is possible only within the framework of a complete theory of

ocean turbulence which entails many interacting scales in a stably stratified medium. But

even without such a theory, there are observed facts and measured data concerning ocean

turbulence that may be used to impose strong restrictions on the structure of the subgrid

term. The most relevant observation is that mixing in the stably stratified ocean occurs



preferentially along isopycnal surfaces.This implies that diapycnal fluxes are small and

thus the non-linear interactions between isopycnal layers are correspondingly weak.

Neglecting these interactions allows us to conclude that the tracer subgrid terms

correspondingto isopycnallayersare independent.In other words, they dependonly on the

meanfields characterizingthe correspondinglayers.Thus, wemay view oceanflow asa set

of two dimensional compressibleflows within the layers where the role of "density" is

played by the thick_mssof the layer Zp=OZ/Op.Since this feature considerably facilitates

the solution of the problem of subgridmodeling in isopycnalcoordinates,we shall proceed

to computethe subgrid terms in the iso---coordinatesand then to transform them into level

coordinates,a non trivial process,as wediscussin the following paper. To this theoretical

argument, oneshouldadd the conclusionof Lozier et a1.(1994)who showedthat averaging

variables like temperature and salinity over z can give rise to water massesthat do not

exist in the real ocean.

Progress in modeling subgrids in iso---coordinateshas recently been achieved.

Dukowicz and Smith (1997), Smith (1999) and Dukowicz and Greatbatch (1999) who

extended to the case of compressible turbulence, the stochastic approach (SA) to

turbulence developedby Monin and Yaglom (1971). The method can be consideredmodel

independentasthe only assumptionis that the diffusion processis Markovian in nature. As

discussedby Monin and Yaglom (1971),for a diffusion processto be markovian, the time

consideredmust be larger than the correlation time of the Lagrangianvelocities and if the

Markovian nature of the processis invalid, the diffusion equation of the Fickian type is

itself invalid. While the SA is not a closuremodel in the ordinary sense,it doesprovide

considerable insight into the functional dependenceof the quantities of interest. In

particular, the SA showedthat the heuristic model of GM (Gent and McWilliams, 1990)

must be correctedby the presenceof newterms which arezeroin the GM model but which

weshowbelow to benon-zero.

The aim of this paper is take over from where the SA left. We shall supplement it
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with a new ingredient, the experimental data on oceanturbulence measuredby Gargett et

al. (1981). This will allow us to compute the so--vailedgauge terms entering the bolus

velocity which cannot be computed within the SA alone. In this and the next paper, we

shall showthat the new tracer subgrid terms in level and isopycnal coordinates differ from

those of previous authors. In particular, we recall that in principle one must deal with four

bolus velocities:

thickness: u+(level), u*(iso) (la)

tracer: u++(level), u (iso) (lb)

entering the subgrid terms for the mean tracer field r, are (t=level, I=iso):

S t = u ++ ._ + w++_ z + Diffusion (level) (lc)

S1 = u "Vp_ + Diffusion (iso) (ld)

where V(-VH) is the 2D gradient in level coordinates at constant z, Vp is the 2D gradient at

constant density p and a tilde/overbar represent averages in iso and level coordinates. In

previous models, it was assumed that all four bolus velocities are identical

u (level)=u (iso)=u++(level)=u (iso) (2a)

whereas we shall show that:

where u
2

u (iso)=u (iso)

u + + (level) = ½u+ (level)

u*(iso)=u+(level) + u
2

is a new term orthogonal to and larger than u +.

(2b)

(2c)

(2d)

II. Tracer Bolus Velocity. Isopycnal Coordinates

Since the fields under consideration (we omit the x,y,t dependence)

p(z), z(p), v(z), v(p) (3a)

are in general random in nature, we decompose them into a mean and a fluctuating part:

p(z) = _(z) +p'(z) (3b)

z(p) = z(p) + z'(p) (3c)



For the velocity field, we must use two decompositions, one in level coordinates

v(z)= _(z) + v'(z)

and the other in isopycnal coordinates:

vCp)= _(p)+ v"(p)

(3d)

(3e)

Fluctuations in level and isopycnal are denoted by a prime and a double prime. For z(p) we

have used the notation (3c) rather than the one corresponding to (3e) since the only

meaningful average of this function is at fixed p and there is no need to distinguish between

an overbar and a tilde. In isopycnal coordinates, the transport equation for the tracer

v-field is written as

where

0tr + U.Vpr = 0 (3f)

Vp= vH-pzl(VHp-) _z (3g)

where pz=_/Oz. From (3f), we can derive the equation for the mean tracer field _:

0t_ + _.Vp_ + S x =0 (3h)

where the isopycnal sub-grid term SI is defined as

S I = "u"" Vpr" (3i)

Since the problem under consideration corresponds to a compressible 2D flow, one should

consider a "thickness weighted average" defined by

- 1_
r = Zp Zpr (4a)

where z
P

is the thickness defined as:

Zp=(_)-'

which, in the case of an adiabatic, Boussinesq fluid, satisfies the equation

(4b)

(4c)

(4d)

(4e)

_Z_t p + Vp(Zp_)= 0

The average of (4c) gives:

Uz_+u
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where u

u = z'u"/z (4f)
p "p

is the "thickness bolus velocity". The transport equation for r can be derived

straightforwardly from Eqs.(3f) and (4c). The result is:

0tr + _.Vpr + S! = 0

S I = u .Vpr + R
^

where R is defined by

(5a)

(55)

R = ZplVp "ZpU"' r" (6a)

where the superscript ("') indicates fluctuations with respect to the weighted averages,

r"'= r-r (6b)

Using Eq.(4a), we may write

~ Zplr--r = rI'--r"' = -- z'r" (7)
P

The SA consists of comparing Eqs.(4d,e), (5) and (6a) with the equations for the time

evolution of _p and r which are obtained on the basis of the Fokker-Planck equation and

which are expressed in terms of the markovian conditional probability density function

p(¢l¢o), where ¢=(r,t). In Appendix A we derive the following results for R and u •
A

R(SA) = - _'Vp. (_ZpVpr) - zplezxVp¢. Vpr (8a)
^

u = r_q-Wpq + _lezXVp¢ + f-lezxVp_ (8b)

S! = u** . Vpr - -i-pIVp. ( n-ZpVp_r) (8c)
^

u**   'ezXVp , (Sd)= r,q-lYpq + flezxVp:_ +

Thus, S I becomes:

where q is potential vorticity:

q = (f+<)z_' (8e)

f is the Coriolis parameter, _ is the vertical relative vorticity and e z is the unit vector along

the z-axis. The velocity u can be interpreted as the "tracer bolus velocity" and in general

is different from the thickness bolus velocity u because of the presence of ¢. The

diffusivity _ is expressed in terms of the function p(_l _0) which is considered known within



the SA while the functions ¢ and 2: arise as arbitrary functions when one equates the

divergencesin Eqs.(4d) and (6a) to the correspondingterms of the SA equations. The

authorsof the SA call ¢ and ;_ gauge terms. We find this terminology inadequate since the

usual meaning from electrodynamcis is that gauge terms are physically arbitrary and no

physical effect can be attributed to them, which is not the case here. In fact, if we had a

complete theory of turbulence, the gauge terms could be computed from Eqs.(8a, b) since all

the other terms would be known. Thus, the functions ¢ and X ought to be considered

unknown (since we don't have such a complete theory) rather than arbitrary. Thus, we

suggest to call ¢ and 2: "axial" terms since they contain vector products of e z with a

gradient which gives rise to an axial vector. Since on the other hand, all terms in (8a-d)

must be polar vectors, all axial terms must contain the first power of f which is the only

available pseudoscalar so that the product of an axial vector with a pseudoscalar yields the

desired polar vector. All other terms in (8a-d) can be called gradient terms. Nevertheless,

on the basis of the traditional interpretation of gauge terms, Dukowicz and Greatbatch

(1999) stressed "the rather unsatisfactory situation that our equations depend on gauge"

and since the tracer subgrid SI Eq.(Sc) depends on 2:, they suggested the choice:

2: = constant (8f)

However, although (8f) makes the subgrid S I independent of the gauge functions, the tracer

subgrid in level coordinates S / will still depend on ¢. In fact, as shown in paper V, of all the

functions present in the right hand side of Eqs.(8) only R given by Eq.(8a) is present in S t

whereas the other terms of St originate from the random nature of the density field.

IIl.Thickness Bolus Velocity.Geostrophic Limit.

Let us decompose the thickness bolus velocity u

U "-U "{'U
1 2

where

(4f) as follows:

(9)
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(10a)

(10b)

lu21>> lu,I

Let us now compute u in the quasi---geostrophic limit where:
2

u" 1 '_ -'" (13a)
= f- ezXVp_

where ¢" is the fluctuating component of the Montgomery potential ¢=gp-1]zdp, and

satisfies the relation:

II =
Cp gz'/p (13b)

Substitute Eqs.(13) into (10b) and take into account that, as we show in paper V, the

correlation functions of the same fields obtained by averaging in level and isopycnal

coordinates differ in the second order in the fluctuating fields. This allows us to employ an

and we conclude that

(12b)

overbar instead of a tilde. The result is as follows:

u2 = (2f)'lN2ezXVP z-'_

= (2f)-'N 2 p2g-2ezXVp_2

= (2f)-lN2p2g-2ezXVp(_z 2 z_)

where N is the Brunt-Vaisala frequency

N2= -gPz/P= - g(_p)_

(14a)

(14b)

(14c)

(14d)

It is worth comparing (14) with the decompositions suggested by Rix and Willebrand

We estimate the two terms as follows:

Iu_I-(_"-_)H-1 (11 a )

tu21~(Z_)(b'H)-_ (llb)

Here, H is of the order of the ocean depth while 6H is of the order of the correlation length

scale of vertical turbulence which, following the experimental data of Gargett et al (1981),

is of the order of few tens of meters (certainly smaller than say 100 meters). Thus,

b'I-I< <H (12a)



(1996,denotedby RW) and by Treguieret al. (1997,denotedby THL). They are:

Usingthe relation

u2(RW)= (2fi_)-'g2¢2%xV_

u (THL) = f-lg2p-2ezXV(_r2N-2 )
2

p* : -- pZ Z!

we can further transform (15) to:

u (RW) = (2fN2)-l%xV (z'2N4)
2

u (THL) = f'l%xV (z-V2N2)
2

Both results differ from our expression (14). As for the u
1

TI-IL and RW are identical

. (THL,RW)= u+=-(_' P"ff)z= (_rff)z

which are different from our expression (10a).

(15a)

(15b)

(15c)

(16a)

(16b)

component of (9), the results of

(16c)

IV. Spectra of Ocean Turbulence. The velocity u
2

Let us rewrite Eq.(13a) in terms of the Fourier components in the isopycnal surface

which we can approximate by a plane:

u"(k) = if-lezxk ¢"(k) (17)

Considering that the gradient of the density is directed almost in the vertical direction and

that the vertical derivatives of u" and ¢" considerably exceed their counterparts in the

horizontal direction, we obtain:

Uz(k) = if-lezxk Cz(k) (18)

which implies that

" k 2 f-2k2 [2lUz()l - l¢z(k)

Both horizontalspectra have sharp maxima at

ko=rLm I

where Lm

(19)

(20)

is the size of the mesoscates. Thus, integrating (19) over k, we obtain the



one-point shear (within a factor of order unity):

= f-2k2 ¢,,_0--Z

The experimental data of Gargett et al. (1981) show that

h-_z ~ N 2

As we show in Appendix B,

and thus we adopt the relation:

[_zz-_z [2 << _uz

=
UZ Z

Substituting Eqs.(21), (22), (23b) and (14d) into (14c), we finally obtain:

. m

u s = ½fko_zezxVpz p

The velocity u will be discussed in the next section.
1

(21)

(22)

(23a)

(23b)

(24)

V. The velocity u. Axial terms ¢ and X.
1

Let us now compare the decomposition (9) with the SA result (8b). We see that u
2

the same structure of the last two terms in (8h) and thus we identify them:

It then follows that

u2 = _lezxVP¢ + f-lezxVpX

has

(25)

A A

u 1 = r_q-lVpq

Ul = - _lVpZp+ _(f+_)'lVp(f+ _) (26)

This identification has an immediate consequence concerning the choice (Sf). In fact, if we

substitute (25) into (8a) and use (8f), we would obtain a large term in R since the u2

obtained from Gargett et al. data (1981) is large because of the small parameter 6H in the

denominator of Eq.(llb). On the other hand, within an accuracy up to the second order in

the fluctuating fields, we can rewrite (6a) in the form

(27)

thus no

R = pzVp. (Zp_r_)

This contains no derivatives versus z and/or p of the fluctuating fields and
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possibility of a b'H which is what makes u large. The choice )_=constant would contradict
2

(24) and is thus not realizable.

We can develop the argument further by noticing that when one can neglect the

derivative of the Coriolis parameter f, both axial functions ¢ and X can be expressed in

terms of the only independent variable _p. This leads us to conclude that the two terms in

the right hand side of (25) may differ only by a constant factor and consequently both are

related to the scale b'H. On the other hand, as we have just discussed, ¢ may be related

only to the scale H. Thus, the only way to achieve consistency is to take

¢ = constant (28)

which has the additional implication that the diffusion term R given by (8a) acquires the

usual form of a diffusion term. Thus, the final expression for SI is:
^ ^ ^

SI = (ul+u).Vpr - -_zVp.(_-_zlVpr) (29)

We notice that u is orthogonal to and larger than u. They are given by Eqs.(24) and (26).
2 1

To check that (12b) is satisfied, we take

f~10-4s-l' k-l=r-lLm~104m'o VP~Ll_l (30a)

where Lh is characteristic horizontal scale. Eq.(24) yields

u2~104Ll_ 1 (30b)

A similar estimate of (26) without the/_---term yields (_103m2s -l)

u ~u (GM)~_LI_I~103LI_ 1 (30c)
1

Thus, the inequality (12b) is fulfilled.

In summary, since mixing occurs along isopycnals and in view of the fact that the use

of such coordinates greatly helps the numerical computations (Bleck and Smith, 1990;

Bleck et al. 1992 and Bleck, private communication), these coordinates are the most

appropriate. However, since a large majority of ocean models employ level coordinates, it is

imperative that we study the subgrid in such coordinates, as we do in paper V.

VI. Comparison with previous work.
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GM and Gent et al. (1990)havesuggestedthe following heuristic parameterization:

u (GM) = - g)l (_Vp _ (31a)

while Cheniawsky and Holloway (1991, 1993) suggested to consider Eq.(4d) as true

diffusion of the thickness Zp. This implies that rather than (31a) one should use:

u (CH) = - _lVp_ (31b)

which has the form of a Fickian diffusion of Zp.

Several authors (McDougall and McIntosh, 1996; Visbeck et al, 1997; Lee et al. 1997;

TttL; Greatbatch 1998; Treguier, 1999; Marshall et al., 1999) have suggested that

mesoscales exchange potential vorticity rather than thickness and that a model of the form:

u = r_"_'pq (31c)
*

yields better overall results. Eq.(31c) coincides with Eq.(26) for u since q=_. When _" is
1

unimportant, Eq.(31c) yields

u = _f-lVpf - _ -_pl Vp-Zp (31d)

which can be rewritten as

u = _-ley + u (CH) (31e)

where ey is the unit vector in the y-direction. Eq.(31e) differs from (31b) because of the

beta-term which becomes important when the gradient of thickness becomes small. For the

$

tracer bolus velocity u in Eq.(Sc), Greatbatch (1998) suggests the expression:

u* = _ (31f)
r,zpVpq

which practically coincides with Eqs.(31c--e). On the other hand, if we compare (31d,e)

with our (26) and (29), we differ by the term u. Since however the vertical resolution2

required to exhibit such a term is quite high, being contributed by scales of a few tens of

meters, it is not surprising that its presence may have gone undetected. Much higher

resolution is required for its detection by eddy resolving models. In this context, it is

relevant to understand analogous estimates by RW. These authors arrive at a

decomposition similar to (9) with u coinciding with (16c) while u is expressed by
1 2

Eq.(16a). The discrepancies between our expression (14a) and (16a) is due to the fact that

12



in the latter the random nature of the density function p(z) was not taken into account.

Even so, a qualitative estimate of (16a) leads once again to (30b). RW used an

eddy-resolving ocean code, calculated the fluctuating fields in (16a) and (16c) and

concluded that

lull >> [u21 (32)

while u was found to be compatible with GM. An analogous conclusion was reached by
1

Treguier (1999). The reason for the discrepancy between (12b) and (32) is that even

eddy-resolving ocean models are unable to resolve the vertical turbulence that is

characterized by scales of the order of tens of meters which are the ones that contribute the

most to (14) and (24). The same reason underlies the discrepancy between our result (24)

and the result from the linear analysis by Killworth (1997) who considered horizontal scales

L>>L m and found that the corresponding modes have a vertical length scale ~ H which

cannot contribute to u2, Eq.(10b).

VII. Conclusions

In this paper we have derived the form of the tracer subgrid in isopycnal coordinates,

Our main result is Eq.(29): the last term corresponds to the Fickian diffusion while the

velocities u are given by Eqs.(24) and (26). We note that the u is close to the form (31c)
1_2 1

used by Lee et al. (1997) for the whole bolus velocity u . The velocity u is new and it
2

corresponds to the axial (gauge) term of the SA results. In addition, u satisfy Eq.(12b).
h2

We have also shown that due to (28), the tracer and thickness bolus velocities coincide. As

for the subgrid in level coordinates, it must be obtained from the corresponding one in

isopycnal coordinates. The process is however non trivial since one must take into account

the random nature of the density field, a problem that will be dealt with in the next paper.
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Appendix A

To simplify matters, we adopt a scalar diffusivity

Kij= a_ij (A.1)

a simplification that is not essential since at the end we can restore the tensorial nature of

K. To derive Eqs.(8), we begin with Eq.(15) of Dukowicz and Greatbatch (1999). Using

(A.1), we have:

^

r " a_p 7-+ gezxVpr+ezXVpX (A.2)ZpU"lr "w = - Vp

Applying the operator Vp to this equation and taking into account definition (6a), we

obtain Eq.(8a). Further applying Eq.(A.2) to the case of potential vorticity q and using

Eqs.(7) and (4f), we transform the left hand side of (A.2) as follows:

zpu"'q"' = ZpUq - q= (f+¢)(u-u) =-(f+ u (A.3)

Substituting (8e) and (A.3) into (A.2) for the case of r=q and using the approximation

u_=u_ by Dukowicz and Greatbatch (1999), we obtain

u* A . _lezxVP ¢ += aq-lVpq + (qZp)-tezXVp)_ 1
(A.4)

where

xl--(x + he) (A.5)

Changing notation from )_t_X in (A.4), we arrive at Eq.(8b). Substituting Eqs.(Sa,b) into

(5b), we arrive at Eqs.(Sc,d).

Appendix B

To prove (23a), we rewrite (16c) of paper V with an accuracy up to O(p'):

u'-u" = Upp'= pzlUz p_

which we further differentiate, square and average. Since

differentiate only p'. Thus, we have:

. t -. -- 12= Pz

Let us evaluate the derivatives using the length scale H for _z

(B.1)

o"I-I<<H, it is sufficient to

(B.2)

' We obtains:and 5I-I for Pz"

14



D

u'-U"zzl_"(H6H)_z2_ p,2

Using Eqs. (15c), (13b), (21) and (22), we obtain

=- (_gA)-'_Lm_"_z
Substituting in (B.3) and taking into account (14d) and (22), we obtain:

[U'z-U"z ]2/U,2z = (fLm/_rN2Hb'I-I)2u2 _ 10"2

where we have used Eq.(30a) and the following values:

N2_10-Ss-1, u-'2 =10-3m2s-2

b'H2=103m 2, H =103m

Eq.(B.5) proves (23a).

(B.3)

(B.4)

(B.5)

(B.6)
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